Section 13.3
 Arc Length and Speed

Arc Length and Speed
Arc Length, Intuition
Example
The Arc Length Function and Arc Length
Parameterization
Examples, Arc Length parametrization

1 Arc Length and Speed

Arc Length

Let $\vec{r}(t)=\langle f(t), g(t), h(t)\rangle$ be a parametrization of a smooth curve \mathcal{C}.
We want to measure the arc length of \mathcal{C} for t in $[a, b]$.
Equivalently, if $\vec{r}(t)=$ position of a particle at time t, then we would like to know the total distance traveled by the particle during the time interval $[a, b]$.
(Note: Arc length is not the same as displacement $\|\vec{r}(b)-\vec{r}(a)\|$, unless \mathcal{C} is a line.)

Example 1: $\quad \vec{r}(t)=\langle R \cos (t), R \sin (t), 0\rangle$. Here \mathcal{C} is a circle of radius R and the distance traveled on $[a, b]$ is $R(b-a)$.

Partition $[a, b]$ into n subintervals of size $\Delta t=\frac{b-a}{n}$.

Therefore, the arc length is given by a Riemann sum:

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left\|\vec{r}^{\prime}\left(t_{i}\right)\right\| \Delta t
$$

Arc Length Formula

The arc length of the curve parametrized by $\vec{r}(t)$ for $a \leq t \leq b$ is

$$
\int_{a}^{b}\left\|\vec{r}^{\prime}(t)\right\| d t=\int_{a}^{b} \sqrt{\left(f^{\prime}(t)\right)^{2}+\left(g^{\prime}(t)\right)^{2}+\left(h^{\prime}(t)\right)^{2}} d t
$$

Arc Length

> Example 2: A cylindrical tower is 30 feet high and has a radius of 10 feet. A spiral staircase wraps around the tower three times from the base to the top of the tower. How long is the staircase?

Solution: The staircase is a helix, so we can parametrize it as follows:

$$
\begin{aligned}
\vec{r}(t) & =\langle 10 \cos (t), 10 \sin (t), 30 t / 6 \pi\rangle & & 0 \leq t \leq 6 \pi \\
\vec{r}^{\prime}(t) & =\langle-10 \sin (t), 10 \cos (t), 5 / \pi\rangle & & \\
\left\|\vec{r}^{\prime}(t)\right\| & =\sqrt{(-10 \sin (t))^{2}+(10 \cos (t))^{2}+\left(\frac{5}{\pi}\right)^{2}} & & =\frac{\sqrt{100 \pi^{2}+25}}{\pi}
\end{aligned}
$$

Length of the staircase: $\int_{0}^{6 \pi}\left\|\vec{r}^{\prime}(t)\right\| d t=6 \sqrt{100 \pi^{2}+25} \approx 77.92$ feet.

2 The Arc Length Function and Arc Length Parameterization

The Arc Length Function

The length of the portion of the curve \vec{r} over the interval $[a, t]$ is

$$
s(t)=\int_{a}^{t}\left\|\vec{r}^{\prime}(\tau)\right\| d \tau
$$

The letter s is reserved for arc length. (Here τ is just a dummy variable.) Note that $s(t)$ is a scalar function of t.

- Speed $=$ rate of change of distance traveled with respect to time t
- Speed $=$ magnitude of velocity
- To see that these two definitions are consistent, differentiate the arc length formula with respect to time t, using FTC:

$$
\text { Speed at time } t=\frac{d s}{d t}=\dot{s}=\left\|\vec{r}^{\prime}(t)\right\| \text {. }
$$

Arc Length Is Intrinsic

Fact: Arc length is an intrinsic property of a curve \mathcal{C}.
Even though we need a parametrization to use the arc length formula, the arc length depends only on \mathcal{C} itself, not on the choice of parameterization.
In other words, if \mathcal{C} is parametrized by two separate functions $\vec{r}(t)$ for $a \leq t \leq b$ and $\overrightarrow{\mathrm{q}}(u)$ for $c \leq u \leq d$, then

$$
\text { arc length }=\int_{a}^{b}\left\|\vec{r}^{\prime}(t)\right\| d t=\int_{c}^{d}\left\|\overrightarrow{\mathrm{q}}^{\prime}(u)\right\| d u
$$

Example 3:

$\vec{r}(t)=\langle\cos (m t), \sin (m t)\rangle$ for $t \in[0,2 \pi / m]$ parameterizes the unit circle for any $m \in \mathbb{R}-\{0\}$.

$$
\begin{aligned}
\int_{0}^{2 \pi / m}\left\|\overrightarrow{\mathbf{r}}^{\prime}(t)\right\| d t & =\int_{0}^{2 \pi / m}\|\langle-m \sin (m t), m \cos (m t)\rangle\| d t=\int_{0}^{2 \pi / m} m d t \\
& =2 \pi \quad \text { (independently of } m \text {). }
\end{aligned}
$$

Arc Length Parametrization

- Think of a smooth curve \mathcal{C} as a road. A parametrization $\vec{r}(t)$ describes how a car drives along the road.
- It would not be very useful to measure a road by having a car drive along it randomly and place a marker every minute!
- Much more useful would be to place mile markers - that is, to record the value of s along the road.
- The mile markers themselves provide a parametrization, namely

$$
\vec{r}(s)=\text { point in the road } s \text { miles from a fixed starting point. }
$$

The parameter is arc length (s) rather than time, so this is called an arc length parametrization. It has the special property that

$$
\left\|\vec{r}^{\prime}(s)\right\|=\frac{d s}{d s}=1
$$

so an arc length parametrization could also be defined as a parametrization with constant speed 1.

Arc Length Parametrization: Example

Example 4: Find an arc length parametrization for the helix

$$
\vec{r}(t)=\langle\cos (t), \sin (t), t\rangle
$$

Solution: Note that $\vec{r}^{\prime}(t)=\langle-\sin (t), \cos (t), 1\rangle$ and $\left\|\vec{r}^{\prime}(t)\right\|=\sqrt{2}$.
The arc length function s, starting at $t=0$, is

$$
s(t)=\int_{0}^{t} \sqrt{2} d \tau=\sqrt{2} t \quad \therefore \quad t=\frac{s}{\sqrt{2}} .
$$

In this case, all we have to do to find an arc length parametrization is to replace t with $s / \sqrt{2}$:

$$
\overrightarrow{\mathrm{q}}(s)=\overrightarrow{\mathrm{r}}\left(\frac{s}{\sqrt{2}}\right)=\left\langle\cos \left(\frac{s}{\sqrt{2}}\right), \sin \left(\frac{s}{\sqrt{2}}\right), \frac{s}{\sqrt{2}}\right\rangle .
$$

However, it is often impossible to find t explicitly as a function of s.

Arc Length Parametrization: Example

Example 5: Find an arc length parametrization for the curve

$$
\vec{r}(t)=\left\langle t, t^{2}, t^{3}\right\rangle .
$$

Solution: Note that $\vec{r}^{\prime}(t)=\left\langle 1,2 t, 3 t^{2}\right\rangle$ and $\left\|\vec{r}^{\prime}(t)\right\|=\sqrt{1+4 t^{2}+9 t^{4}}$. The arc length function s, starting at $t=0$, is

$$
s(t)=\int_{0}^{t} \sqrt{1+4 \tau^{2}+9 \tau^{4}} d \tau
$$

This is a well-defined, increasing (hence invertible!) function of t, but neither it nor its inverse can be expressed in any reasonable closed form.

Nevertheless, the arc length parametrization exists, and we can often work with it (using FTC and the Chain Rule) without needing to write it down as an explicit formula.

Arc Length Parametrization in General

Any parametrization $\vec{r}(t)$ of a smooth curve \mathcal{C} can be used to find an arc length parametrization of the curve:

Since $s^{\prime}(t)=\left\|\vec{r}^{\prime}(t)\right\|>0$, the function $s(t)$ is increasing, therefore has an inverse. So we can think of t as a function of s.

With this in mind, define a parametrization $\vec{q}(s)$ as a composition:

$$
\overrightarrow{\mathrm{q}}(s)=\vec{r}(t(s))
$$

The function \vec{q} has the same image as \vec{r}, so it also parametrizes \mathcal{C}. Moreover, \vec{q} is an arc length parametrization because

$$
\left\|\frac{d \overrightarrow{\mathrm{q}}}{d s}\right\|=\left\|\frac{d \overrightarrow{\mathrm{r}}}{d t}\right\| \frac{d t}{d s}=\left\|\overrightarrow{\mathrm{r}}^{\prime}(t)\right\| \frac{1}{\left\|\overrightarrow{\mathrm{r}}^{\prime}(t)\right\|}=1
$$

In particular, $\overrightarrow{\mathrm{q}}^{\prime}(s)$ is a unit tangent vector for all s.

What We're Skipping in Chapter 13

Some of the things you can do with an arc length parametrization:

- construct the moving frame (which measures how the directions "forward", "inward" and "upward" change along the curve)
- measure curvature (how bendy is a curve, i.e., how much does it deviate from linearity?)
- measure torsion (how far much does it deviate from lying in a plane?)
- with a little basic physics, derive Kepler's laws of planetary motion (the first largely accurate model for the astronomical universe, and it's all based on vectors and calculus)

